Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Food Sci Technol ; 59(4): 1468-1477, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250070

RESUMO

Andean bean group have a wide number of genotypes and are available as a source of nutrients and antioxidant compounds in a diet. Proteins, minerals, phenolic compounds, phytic acid, and antioxidant activity were evaluated in 14 white, red, and mottled seed coat genotypes. The Ca, Mg and Cu contents presented the greatest variability. The white seed coat genotypes presented lower phenolic compounds and antioxidant activity levels than the red and mottled seed coat genotypes. A strong correlation between phenolic compounds and antioxidant activity was observed, and hierarchical cluster analysis showed the formation of three groups (G1, G2 and G3). G1 and G2 can be recommended to individuals who want foods with a high content of antioxidant compounds, while any group can be consumed to meet the demand for a diet rich in minerals. G1 and G3 can be recommended to individuals who want a diet high in protein. Changes in eating habits are a barrier to incorporating new sources of nutrients into a traditional diet. However, Andean beans can easily be incorporated into the diets of those who already consume beans daily, as Andean beans can be prepared in the same manner as other beans. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05157-7.

2.
Front Plant Sci ; 12: 748829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691125

RESUMO

The population growth trend in recent decades has resulted in continuing efforts to guarantee food security in which leguminous plants, such as the common bean (Phaseolus vulgaris L.), play a particularly important role as they are relatively cheap and have high nutritional value. To meet this demand for food, the main target for genetic improvement programs is to increase productivity, which is a complex quantitative trait influenced by many component traits. This research aims to identify Quantitative Trait Nucleotides (QTNs) associated with productivity and its components using multi-locus genome-wide association studies. Ten morpho-agronomic traits [plant height (PH), first pod insertion height (FPIH), number of nodules (NN), pod length (PL), total number of pods per plant (NPP), number of locules per pod (LP), number of seeds per pod (SP), total seed weight per plant (TSW), 100-seed weight (W100), and grain yield (YLD)] were evaluated in four environments for 178 Mesoamerican common bean domesticated accessions belonging to the Brazilian Diversity Panel. In order to identify stable QTNs, only those identified by multiple methods (mrMLM, FASTmrMLM, pLARmEB, and ISIS EM-BLASSO) or in multiple environments were selected. Among the identified QTNs, 64 were detected at least thrice by different methods or in different environments, and 39 showed significant phenotypic differences between their corresponding alleles. The alleles that positively increased the corresponding traits, except PH (for which lower values are desired), were considered favorable alleles. The most influenced trait by the accumulation of favorable alleles was PH, showing a 51.7% reduction, while NN, TSW, YLD, FPIH, and NPP increased between 18 and 34%. Identifying QTNs in several environments (four environments and overall adjusted mean) and by multiple methods reinforces the reliability of the associations obtained and the importance of conducting these studies in multiple environments. Using these QTNs through molecular techniques for genetic improvement, such as marker-assisted selection or genomic selection, can be a strategy to increase common bean production.

3.
Plants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34451614

RESUMO

One of the significant challenges of common bean breeding is developing cultivars with high yields under drought conditions. The present study attempted to map quantitative trait loci (QTLs) and identify molecular markers that are linked to drought tolerance in the common bean. We evaluated 160 recombinant inbred lines (RILs), derived from the cross between the carioca cultivars IAPAR 81 (drought tolerant) and LP97-28 (susceptible to drought). In 2014 and 2015, two experiments were conducted (DS-drought stress, and NS-no drought stress). In the DS experiment, water suppression was performed at the flowering stages R5 to R6. The results of our experiments showed that drought conditions play an essential role in reducing most of the traits that were evaluated. RILs under drought conditions reduced the grain yield by 62.03% and 24% in 2014 and 2015, respectively. We identified 15 quantitative trait loci distributed on the chromosomes Pv01, Pv02, Pv03, Pv07, Pv08, Pv09, Pv10, and Pv11, related to grain yield, seed yield per day, 100-seed weight, number of pods per plant, plant height, number of days for flowering, and number of days to maturity. The characteristics of seed yield per day, 100-seed weight, and number of days to maturity showed that QTLs colocalized on Pv07. Identifying QTLs that are linked to drought tolerance in the RIL population IAPAR 81 × LP97-28 is of particular importance for common bean breeding programs seeking to improve carioca beans that are cultivated in regions with drought conditions, such as Brazil.

4.
Plants (Basel) ; 10(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205241

RESUMO

Beans (Phaseolus vulgaris L.) are an important source of proteins, carbohydrates, and micronutrients in the diets of millions of people in Latin America and Africa. Studies related to genetic variability in the accumulation and distribution of nutrients are valuable for biofortification programs, as there is evidence that the seed coat and embryo differ in the bioavailability of essential nutrients. In this study, we sought to evaluate the genetic variability of total mineral content in the grain and its constituent parts (seed coat, cotyledon, and embryonic axis) of bean genotypes from Mesoamerican and Andean centers of origin. Grain samples of 10 bean cultivars were analyzed for the content of proteins and minerals (Mg, Ca, K, P, Mn, S, Cu, B, Fe, and Zn) in the whole grains and seed coat, cotyledons, and embryonic axis tissues. Genetic variability was observed among the cultivars for protein content and all evaluated minerals. Moreover, differential accumulation of minerals was observed in the seed coat, cotyledons, and embryonic axis. Except for Ca, which accumulated predominantly in the seed coat, higher percentages of minerals were detected in the cotyledons. Furthermore, 100-grain mass values showed negative correlations with the contents of Ca, Mg, P, Zn, Fe, and Mn in whole grains or in the different grain tissues. In general, the Mesoamerican cultivars showed a higher concentration of minerals in the grains, whereas Andean cultivars showed higher concentrations of protein.

5.
Theor Appl Genet ; 134(9): 2795-2811, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34027567

RESUMO

KEY MESSAGE: QTNs significantly associated to nine mineral content in grains of common bean were identified. The accumulation of favorable alleles was associated with a gradually increasing nutrient content in the grain. Biofortification is one of the strategies developed to address malnutrition in developing countries, the aim of which is to improve the nutritional content of crops. The common bean (Phaseolus vulgaris L.), a staple food in several African and Latin American countries, has excellent nutritional attributes and is considered a strong candidate for biofortification. The objective of this study was to identify genomic regions associated with nutritional content in common bean grains using 178 Mesoamerican accessions belonging to a Brazilian Diversity Panel (BDP) and 25,011 good-quality single nucleotide polymorphisms. The BDP was phenotyped in three environments for nine nutrients (phosphorus, potassium, calcium, magnesium, copper, manganese, sulfur, zinc, and iron) using four genome-wide association multi-locus methods. To obtain more accurate results, only quantitative trait nucleotides (QTNs) that showed repeatability (i.e., those detected at least twice using different methods or environments) were considered. Forty-eight QTNs detected for the nine minerals showed repeatability and were considered reliable. Pleiotropic QTNs and overlapping genomic regions surrounding the QTNs were identified, demonstrating the possible association between the deposition mechanisms of different nutrients in grains. The accumulation of favorable alleles in the same accession was associated with a gradually increasing nutrient content in the grain. The BDP proved to be a valuable source for association studies. The investigation of different methods and environments showed the reliability of markers associated with minerals. The loci identified in this study will potentially contribute to the improvement of Mesoamerican common beans, particularly carioca and black beans, the main groups consumed in Brazil.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Minerais/metabolismo , Phaseolus/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Brasil , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla , Minerais/análise , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento
6.
PLoS One ; 16(4): e0249858, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886606

RESUMO

The common bean (Phaseolus vulgaris L.) is of great importance to the food and nutritional security of many populations, and exploitation of the crop's genetic diversity is essential for the success of breeding programs. Thus, the aim of the present study was to evaluate the genetic diversity of 215 common bean accessions, which included cultivars, obsolete cultivars, improved lines, and landraces using morpho-agronomic and biochemical traits, and amplified fragment length polymorphism markers (AFLP). Genetic parameters, box plots, Pearson's correlation analysis, and Ward's hierarchical clustering were used to analyze the data. The Jaccard similarity coefficient and neighbour-joining clustering method were used for molecular analysis. A wide variability among the accessions was observed for morpho-agronomic and biochemical traits. Selective accuracy (Ac) and broad-sense heritability (h2) values were high to intermediate for all traits, except seed yield. Ward's hierarchical clustering analysis generated six groups. AFLP analysis also revealed significant differences among the accessions. There was no correlation between the differences based on genetic markers and those based on morpho-agronomic and biochemical data, which indicates that both datasets are important for elucidating the differences among accessions. The results of the present study indicate great genetic diversity among the evaluated accessions.


Assuntos
Phaseolus/genética , Polimorfismo Genético , Produção Agrícola/métodos , Phaseolus/crescimento & desenvolvimento , Característica Quantitativa Herdável , Seleção Artificial
7.
Sci Rep ; 11(1): 2964, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536468

RESUMO

Brazil is the world's largest producer of common bean. Knowledge of the genetic diversity and relatedness of accessions adapted to Brazilian conditions is of great importance for the conservation of germplasm and for directing breeding programs aimed at the development of new cultivars. In this context, the objective of this study was to analyze the genetic diversity, population structure, and linkage disequilibrium (LD) of a diversity panel consisting of 219 common bean accessions, most of which belonging to the Mesoamerican gene pool. Genotyping by sequencing (GBS) of these accessions allowed the identification of 49,817 SNPs with minor allele frequency > 0.05. Of these, 17,149 and 12,876 were exclusive to the Mesoamerican and Andean pools, respectively, and 11,805 SNPs could differentiate the two gene pools. Further the separation according to the gene pool, bayesian analysis of the population structure showed a subdivision of the Mesoamerican accessions based on the origin and color of the seed tegument. LD analysis revealed the occurrence of long linkage blocks and low LD decay with physical distance between SNPs (LD half decay in 249 kb, corrected for population structure and relatedness). The GBS technique could effectively characterize the Brazilian common bean germplasms, and the diversity panel used in this study may be of great use in future genome-wide association studies.


Assuntos
Genoma de Planta , Phaseolus/genética , Melhoramento Vegetal/métodos , Seleção Genética , Brasil , DNA de Plantas , Domesticação , Frequência do Gene , Pool Gênico , Variação Genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
8.
Food Chem ; 339: 127917, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950898

RESUMO

Andean beans (Phaseolus vulgaris) chemical compositions and cooking characteristics contribute to a healthy diet. The objective of this study was to evaluate the influence of chemical composition on the cooking quality of 14 Andean beans genotypes with different seed coat colors. More specifically, water retention (WR), cooking time (CT), and solids released in the broth, were analysed. WR values ranged from 128.4% to 160.7% and CT ranged from 13.7 (BRS Embaixador) to 21.7 min (KID44). Andean beans showed variability in chemical composition, mainly starch content (39.43 g 100 g-1, BRS Realce to 51.92 g 100 g-1, LP15-04) and polymer composition. The profile of starch and interactions among minerals and chemical compounds influenced the cooking profiles than do the individual compounds. Andean beans traits of cooking, mainly CT, were influenced by their chemical composition; however they can be incorporated into diets without drastic changes in preparation methods.


Assuntos
Culinária/métodos , Phaseolus/química , Amido/análise , Amilopectina/análise , Amilose/análise , Genótipo , Minerais/análise , Análise Multivariada , Phaseolus/genética , Phaseolus/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo
9.
PLoS One ; 15(9): e0239263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986739

RESUMO

Mineral deficiency is worldwide one of the major problems associated with human health, and biofortification through breeding is considered an important strategy to improve the nutritional content of staple food in countries that face this problem. The assessment of genetic variability for seed nutrient contents is a first step in the development of a biofortified crop. From the germplasm bank IDR-IAPAR-EMATER, a set of 1,512 common bean accessions, consisting of local and commercial varieties and improved lines, was analyzed. High variability among the accessions was observed for all evaluated nutrient contents (P, K, Ca, Mg, Cu, Zn, Mn, Fe and S and protein). In the mean, the contents of the carioca and black market groups (Mesoamerican gene pool), were around 7% higher for the minerals Ca, Cu, Mn and Fe and between 2-4% higher for P, K, Mg and Zn than in the other groups with Mesoamerican and Andean common bean. Few differences were observed among the Mesoamerican accessions that belong to the carioca and black commercial groups. Wide variability was observed among the evaluated genotypes, and the concentrations of the best accessions exceeded the overall mean by 14-28%. Due to the high variability in the evaluated accessions, these results may contribute to the selection of promising parents for the establishment of mating blocks. The nutritional contents of many of the improved lines evaluated in this study were higher than those of the commercial cultivars, indicating the possibility of developing new biofortified cultivars.


Assuntos
Biofortificação , Phaseolus/química , Banco de Sementes , Sementes/química , Brasil , Cruzamento , Genótipo , Humanos , Ferro/química , Minerais/química , Phaseolus/genética , Sementes/genética
10.
Front Plant Sci ; 11: 1168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849723

RESUMO

Common bean (Phaseolus vulgaris L.) is one of the most important crops worldwide and is considered an essential source of proteins, fibers, and minerals in the daily diet of several countries. Nitrogen (N) is considered the most important nutrient for common bean crop. On the other hand, the reduction of chemical fertilizers is a global challenge, and the development of cultivars with more N use efficiency (NUsE) is considered one of the main strategies to reduce the amount of N fertilizers. Genetic progress of NUsE has been reported in several crops; however, there was still no quantity in common bean. In this study, our goal was to analyze the genetic progress of seed yield (SY) and NUsE-related traits of 40 carioca common bean cultivars release from 1970 to 2017 in eight environments under low (zero) or high N (40 kg ha-1) in top-dressing. Genetic progress, principal component analysis, correlations among traits, and cultivar stability were analyzed using Bayesian approaches. The lowest values of the deviance information criterion (DIC) for the full model tested indicated the presence of the genotype × N × environment interaction for all evaluated traits. Nitrogen utilization efficiency (NUtE) and nitrogen uptake efficiency (NUpE) were the traits that most contributed to discriminate cultivars. The genetic progress of SY under high N (0.53% year-1, 95% HPD = 0.39; 0.65% year-1) was similar to that obtained in low N conditions (0.48% year-1, 95% HPD = 0.31; 0.64% year-1). These results indicate that modern cultivars do not demand more N fertilizers to be more productive. In addition, we observed a high genetic variability for NUsE-related traits, but there was no genetic progress for these variables. SY showed negative correlation with seed protein content (Prot) in both N conditions, and there was no reduction in Prot in modern cultivars. Both modern and old cultivars showed adaptability and stability under contrasting N conditions. Our study contributed to improve our knowledge about the genetic progress of common bean breeding program in Brazil in the last 47 years, and our data will help researchers to face the challenge of increase NUsE and Prot in the next few years.

11.
Physiol Mol Biol Plants ; 24(6): 1059-1067, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30425423

RESUMO

Water deficit is one of the main factors that reduce grain yield. A better understanding of the mechanisms related to this abiotic stress is a key aspect to design and act upon drought tolerance improvement in crop plants. Therefore, the major objective of this study was to investigate four common bean genotypes for drought tolerance and to establish their tolerance mechanisms. The experiment was carried out in a greenhouse, using the completely randomized design in a factorial arrangement (2 × 4), composed by 2 water conditions (well-watered and water deficit) and 4 cultivars, with six replicates per treatment. The four cultivars, two drought-sensitive (IAC Tybatã and BRS Pontal) and two drought-tolerant (IAPAR 81 and BAT 477), were evaluated for some physiological, biochemical and morphoagronomic traits. Drought promoted physiological and metabolic changes in the plants, reflecting on the morphoagronomic traits. Under water deficit, the genotype IAPAR 81 stood out from the others in terms of physiological characters, however, it presented a low efficiency concerning biochemical activities and a significant reduction in the morphoagronomic characters. The cultivar BAT 477 demonstrated to be drought-adapted presenting more efficient biochemical and morphoagronomic adaptions and the genotype BRS Pontal obtained morphoagronomic values similar to BAT 477, thus it may be classified as moderately tolerant to drought.

12.
PLoS One ; 12(11): e0188798, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190665

RESUMO

Common bean (Phaseolus vulgaris L.) is one of the most important legumes for human consumption and is a staple food in the diet of the population of some countries of Latin America, Africa and Asia. The distinction between cultivars is based predominantly on morphological descriptors, which proved inefficient for the differentiation of some cultivars. This study had the objective of describing, distinguishing and evaluating the agronomic potential of 39 common bean cultivars of the carioca and black grain groups registered for cultivation in Brazil, based on 49 morphoagronomic descriptors and microsatellite (simple sequence repeat -SSR) markers. The morphoagronomic traits of each commercial group were characterized in four environments. Thirty-seven SSR markers were used for the molecular description. The morphological data, analyzed by the Shanonon-Weaver index, detected low variability among cultivars for qualitative data. On the other hand, the estimates of variance analysis, relative importance of the traits and hierarchical grouping analysis applied to the quantitative variables showed that the descriptors related to plant morphology were the most important for the carioca group, and those related to seed morphology were determining for the black group. The genetic parameters estimated for SSR markers by hierarchical and Bayesian cluster analysis identified 116 alleles, with 33 and 30 polymorphic loci and 24 and 22 private alleles for the carioca and black groups, respectively. The combined use of morphoagronomic and molecular descriptors improves the distinguishability of cultivars, contributing in a more efficient way to breeding and to the protection of cultivars.


Assuntos
Phaseolus/classificação , Teorema de Bayes , Análise por Conglomerados , Repetições de Microssatélites/genética , Phaseolus/genética
13.
Braz. arch. biol. technol ; 53(1): 27-34, Jan.-Feb. 2010. tab
Artigo em Inglês | LILACS | ID: lil-543189

RESUMO

This work investigated the genetic control of seed morphological traits and its correlations with grain yield in common bean. Three crossings among bean cultivars with different growth habit and seed characteristics were analyzed. F1 progenies gave origin to F2, RC1P1F1 and RC1P2F1 generations. Random samples of seeds from F2 generations and parents, F1 and backcrossings were sown during the season 2003/2004. Plant grain yield and seed morphological traits were determined by a sample of 150 plants from F2 generations and 20 plants from parents, F1 and backcrosssings. Genetic effects involved in each crossing were obtained from estimates of genetic components means and genetic and environmental components of phenotypical variance. Results showed that the seed morphological traits were controlled by a complex of genes, with additive effects predominance although dominance effects were present. High and negative correlations among seed length and thickness with grain yield suggested greater grain yield in bean plants with smaller seeds.


Este trabalho estudou o controle genético de características morfológicas de sementes e suas correlações com a produtividade de grãos em feijoeiro comum. Para tanto, foram efetuados três cruzamentos entre cultivares de feijoeiro com diferentes características de sementes. As progênies F1 deram origem às gerações F2, RC1P1F1 e RC1P2F1. Uma amostra aleatória de sementes das gerações dos parentais, F1, F2 e retrocruzamentos foram semeadas na safra das águas de 2003/2004. Na maturação fisiológica foram amostradas 150 plantas das gerações F2 e 20 plantas dos parentais, F1 e retrocruzamentos, nas quais foram determinados a produtividade de grãos por planta e as seguintes características morfológicas de sementes: comprimento, largura e espessura. Os efeitos genéticos envolvidos em cada cruzamento foram obtidos por meio das estimativas dos componentes das médias e variâncias fenotípicas. As características morfológicas de sementes foram controladas por um complexo de genes, com predominância de efeitos aditivos, embora os efeitos de dominância foram presentes. Correlações altas e negativas entre a largura e espessura de semente com produtividade de grãos sugeriram maiores produtividades de grãos em feijoeiros que possuem sementes menores.

14.
Genet. mol. biol ; 30(3): 594-598, 2007. ilus, tab
Artigo em Inglês | LILACS | ID: lil-460077

RESUMO

The purpose of this research was to elucidate the genetic control of orange corona color in carioca common beans (Phaseolus vulgaris). We made four crosses between carioca group cultivars that differed in respect to the presence or absence of an orange hilum corona color. The F2, F3, F1BC11, F1BC21, F2BC11 and F2BC21 phenotypic segregations were evaluated with a chi-square test which fitted with the hypothesis that one gene with a dominant allele is responsible for the orange corona color. All generations resulting from the four different crosses showed segregation patterns which agreed with the expected proportions. Our results show that the dominant G allele controls orange corona color in the carioca bean group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...